Contents
INTRODUCTION: ... 3
CHECKLIST / PARTS LIST ... 4
OPTIONAL SETUP PARTS AND SUPPLIES ... 5
SETUP .. 6
 ASSEMBLY ... 6
 POSITIONING AND INSULATING .. 9
 POSITIONING ... 9
 BRICKING .. 9
 SETTING THE PANS ... 12
 INSTALLING THE DRAW OFF VALVES ... 12
 First Boil ... 13
OPERATION OF THE HALF PINT EVAPORATOR ... 14
 THEORY OF OPERATION ... 14
 GRADIENT ... 14
 MAKING SYRUP ... 16
 FLOW REVERSAL ... 16
HYDROMETER FUNCTION .. 18
 USE OF A HYDROMETER ... 18
 Preparing a New Hydrometer For Use: ... 18
 Using The Hydrometer ... 18
MAINTENANCE ... 20
 DAILY .. 20
 END OF SEASON .. 20
FEEDBACK ... 20
NOTES ... 20
INTRODUCTION:

The LEADER “half pint” evaporator is named for its small size. It is specifically designed for the hobbyist maple sugar maker with 20 to 50 taps while keeping the continuous flow, reverse feed operation of the larger evaporators.

In a continuous flow evaporator, sap is channeled using dividers in the pan so the liquid works its way through the pan until finally becoming syrup (see the section titled THE GRADIENT). When the syrup is ready it is drawn off. A short time later, more of the sap will become syrup and another small batch is drawn off.

Sap is boiled only long enough to make syrup. By limiting the time heating and reheating the sap, the caramelizing of the sugars will be reduced. Reducing the caramelizing of the sugars will result in lighter colored, milder flavored syrup.

As you boil the evaporator will collect residual materials of sugar sand and niter especially in the compartment of the evaporator where the syrup is being finished – where the liquid is hottest. Over time the pan can scorch where there is a buildup of sand. The reverse flow capability of the half pint allows you to change the direction of sap flow allowing the evaporator to “wash” the sand and niter out of the pan.

The following is an introduction to the parts of the half pint evaporator:
CHECKLIST / PARTS LIST

<table>
<thead>
<tr>
<th>PART IDENTIFICATION</th>
<th>QUANTITY</th>
<th>DESCRIPTION/PHOTO</th>
<th>PART IDENTIFICATION</th>
<th>QUANTITY</th>
<th>DESCRIPTION/PHOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>1</td>
<td></td>
<td>Back</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>1</td>
<td></td>
<td>Right</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bottom</td>
<td>1</td>
<td></td>
<td>G (Grate Rail)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Draft Latch Bolt and Nut 10-24X 1 1/2”</td>
<td>1</td>
<td></td>
<td>Draft Latch</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>I (Corner Bracket)</td>
<td>2</td>
<td></td>
<td>J (Corner Bracket)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>J (3 Holed Steel Legs)</td>
<td>4</td>
<td></td>
<td>H (Grate Assembly)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Machine Screws ¼-20 X ½“</td>
<td>44</td>
<td></td>
<td>Machine Screws ¾-20 X ¾“</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Ball Valve ½” Lead Free (Order #: 60152)</td>
<td>1</td>
<td></td>
<td>Stainless Steel ½” Close Nipple (Order #: 72101)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Reservoir Pan (Order #: 372433R)</td>
<td></td>
<td></td>
<td>Boiling Pan (Order #:372433L)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OPTIONAL SETUP PARTS AND SUPPLIES

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>LEADER ORDER #</th>
<th>DESCRIPTION/PHOTO</th>
<th>ITEM</th>
<th>LEADER ORDER #</th>
<th>DESCRIPTION/PHOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire Brick Full (qty.: 32)</td>
<td>65003</td>
<td></td>
<td>Fire Brick (qty.: 63)</td>
<td>65006</td>
<td></td>
</tr>
<tr>
<td>Rail Gasket ½” X 2” x 25’ roll</td>
<td>65154</td>
<td></td>
<td>Refractory Cement</td>
<td>65001</td>
<td></td>
</tr>
<tr>
<td>Galvanized Elbow 6” 24 Gauge</td>
<td>5200</td>
<td></td>
<td>Galvanized Smoke Stack (qty.: 3)</td>
<td>52006</td>
<td></td>
</tr>
<tr>
<td>SS Nipple ½”</td>
<td>72101</td>
<td></td>
<td>Ball Valve ½” Stainless Steel (qty.: 2)</td>
<td>60100</td>
<td></td>
</tr>
</tbody>
</table>

END OF HALF PINT KIT LIST

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>LEADER ORDER #</th>
<th>DESCRIPTION/PHOTO</th>
<th>ITEM</th>
<th>LEADER ORDER #</th>
<th>DESCRIPTION/PHOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Hydrometer Cup</td>
<td>59007</td>
<td></td>
<td>Short Hydrometer</td>
<td>61064</td>
<td></td>
</tr>
<tr>
<td>Thermometer 3” or 5” face, 6” stem Recommended qty.: 2</td>
<td>61022 3” Face/6” Stem</td>
<td></td>
<td>Firing Gloves</td>
<td>63123</td>
<td></td>
</tr>
<tr>
<td></td>
<td>61028 5” Face/6” Stem</td>
<td></td>
<td></td>
<td>63015</td>
<td></td>
</tr>
</tbody>
</table>

The following section lists the parts for the Half Pint Startup Kit. The Half Pint Startup kit contains all the parts needed to complete the setup of the Half Pint Evaporator. The following parts can be ordered as a kit (Order #: 302435) of individually as listed.
SETUP

DIMENSIONS

ASSEMBLY

NOTE:
- Assemble the arch close to the location where it will be used.
- The following pictures were taken of an already fully assembly ½ pint arch and are used for illustration purposes.
- Except where indicated use ¼”-20X ½” bolts for assembly.
- Bolts should be inserted into arch so the heads are exposed and the threads are inside the arch.
- Finger tighten bolts unless otherwise instructed.

1. Mount Left and right panel to the bottom panel. Fasten with ¼”-20X ½” bolts and matching nuts with the bolt heads on the outside of the arch. Finger tighten the bolts.
 a. Mountings holes are only in the bottom flange.
 b. Flanges on the bottom of the sides are mounted under bottom panel.
 c. Mount bolts in only the two middle holes of each side.
2. Raise and support the arch up approximately 8” up from the working surface.

3. Use ¼”-20 X ¾” bolts to mount the legs onto the arch. The bolt heads should be outside of the arch. The mounting holes are located one in each side corner and two in each bottom corner. Tighten these bolts with a screwdriver and a 7/16” wrench.

4. Remove the supports and place the arch upright on its legs.

5. Mount front panel with ¼”-20X ½” bolts and matching nuts with the bolt heads on the outside of the arch. Finger tighten the bolts.
 a. To the left and right sides so the flanges of the front panel are outside the left and right sides.
 b. The upright flange of the bottom panel should be behind the front panel.

6. Mount back panel with ¼”-20X ½” bolts and matching nuts with the bolt heads on the outside of the arch. Finger tighten the bolts.
 a. Back panel flanges go outside the left and right side panels
 b. The bottom panel flange goes inside the back panel

7. All parts assembled so far should be mounted together with bolts that have been finger tightened.

8. Square one corner using a carpenter’s square and tighten all the bolts in that corner. All flanges should align. Repeat until all four corners are complete.

9. Tighten all remaining installed bolts.

10. Use ¼”-20 X ¾” bolts and associated nuts with bolt heads outside of the arch to mount a grate rail to the left and right sides. The grate rails should be mounted with the angle iron pointed down. Prior to tightening the bolts, pull the grate rail as high as possible on the side panel then tighten the bolts with a screwdriver and 7/16” wrench.

11. Install the corner brackets with ¼”-20X ½” bolts and matching nuts with the bolt heads on the outside of the arch.
 a. Bracket I to the front right and the back left
 b. Bracket J to the front left and the back right
 Brackets must be installed correctly for the fittings of the boiling pan to set on the arch.
12. Install the draft door latch using the 10-24 X 1-1/2” bolt and nut. The notches in the latch should be pointed towards the front of the arch. To ease the installation you may remove the door by pulling the hinge pin that connects the door to the arch front.

13. Install the grates assembly. The edges of the grate assembly are placed on the grate rail. The “V” grooves of the grates will be parallel to the sides of the arch.
POSITIONING AND INSULATING

POSITIONING
1. Place the arch on a stable surface. Use a 4 foot level and level the arch front to back and side to side. Shim the legs as necessary using metal shims. Shims are not included.
2. Place the boiling pan on the arch so it rests between the corner brackets (dividers run front to back) and recheck the level.
3. Install the elbow and stack. The half pint evaporator requires a 6” 90° elbow and 6” smoke stack. Install at least 3 three foot lengths of stack.
4. Remove the boiling pan and grate then brick as described in the following directions.

BRICKING

NOTES:
- Fire bricks and cement used should be rated for 3000°F
- To apply cement, completely skim coat the metal of the arch where the brick is to be installed. Put about 1/8” on each edge of the brick to be installed and a skim coat on the side facing the metal.
- As you install the bricks, smooth the cement that will be forced from between the bricks.
- After completing the bricking, allow the cement to dry at room temperature (approximately 65°F).
- Measurements in these drawings will vary depending on the technique used in bricking. Always “dry fit” the bricks first to ensure a good fit.

BOTTOM

1. You will need 18 half bricks
2. Cut a ½ bricks in half (result is 2 pcs 4 ½” x 4 ½” (HBB).
3. Coat the floor with refractory cement.
4. Place the bricks into the arch as illustrated. The spacing between the outside panels of the arch and the brick is approximately 1”. Remember to coat the edges of the bricks with approximately 1/8” of refractory cement.
BACK

1. You will need 13 half bricks
2. Cut bricks for the locations as labeled
 a. B1 – 4” X 6.5”
 b. B2 – 3.5” X 6.5”
3. Apply a coat of cement to the back panel.
4. Place the bricks into the arch as illustrated. Remember to coat the edges of the bricks with approximately 1/8” of refractory cement.
5. The end bricks of the bottom row will be behind the bottom row of the full bricks when the sides are bricked (side bricks not shown in this diagram).
6. Fill the gaps between the smoke stack elbow and the brick with refractory cement.

SIDES

1. Both sides are laid out the same. Mirror the above diagram for the left side of the arch.
2. You will need for each side; 7 full bricks, 11 – ½ half bricks
3. Cut one half brick in half (result is 2 pcs 4 ¾” x 4 ¼”) (HHB). Use the extra ½ brick on the opposite side.
4. Apply a coat of cement to the side to be bricked.
5. Place the bricks into the arch as illustrated. Remember to coat the edges of the bricks with approximately 1/8” of refractory cement.
6. If the bricks do not fit under the rail, loosen the grate rail bolts and slide the rail up the side as much as possible then retighten the bolts. If the bricks still do not fit, trim the length of the brick.
7. The first row of bricks toward the arch front should be up against the bolts in the side of the arch.

FRONT

1. You will need 2 full bricks and 3 half bricks
2. Cut one of the half bricks in half (result is 2 pcs 4 ¾” x 4 ¼”) (HHB)
3. Apply a coat of cement to the front panel from the outside edge to the line of bolts holding the door section to the front panel.
4. Place bricks in the arch as illustrated. Remember to coat the edges of the bricks with approximately 1/8” of refractory cement.
5. Fill in all edges and gaps with cement.

FIREWALL

1. You will need 16 full bricks and 6 half bricks.
2. Cut bricks for the locations as labeled:
 a. FW1 – full brick cut to 4” x 4 ½” (4 needed)
 b. FW2 – half brick cut to 4” X 4 ½”
 c. Cut one half brick in half (results in 2 pcs 4 ½” X 4 ½”) (HHB)
 d. Cut one full brick in half (results in 2 pcs 4 ½” X 4 ½”) (HFB)
3. Place a pencil mark 8 ½” in front of the face of the back wall brick. This is the front of the firewall.
4. Place bricks in the arch as illustrated. The bricks are laid with the 4 ½” side down. Only the surfaces of the brick where they face another brick need to be coated with cement.
5. Fill all edges and gaps with cement.

SETTING THE PANS

1. Place the boiling pan on the arch so the pan rests between the corner brackets of the arch.
2. Place the reservoir pan to the front of the arch with the connectors towards the front of the arch.
3. Wrap both ends of the ½” stainless steel nipple (supplied) with Teflon tape.
4. Screw the supplied brass lead free ball valve onto one end of the stainless steel nipple. The assembly is referred to as the reservoir pan faucet.
5. Locate the front draw off of the boiling pan.
6. Connect the reservoir pan faucet to the connector on the reservoir pan that is on the same side as the front draw off of the boiling pan. Ex. if the boiling pan draw off is on the right side, screw the reservoir pan faucet into the right side connector of the reservoir pan.
7. Place the reservoir pan 6” from the front of the boiling pan.
8. You will need to add a draw off valve to the boiling pan draw off connectors (2 needed). Contact LEADER EVAPORATOR Customer Service or your local dealer for options and costs

INSTALLING THE DRAW OFF VALVES

It is recommended two ½” stainless steel ball valves (LEADER Order # 60100) and 2 ½” stainless steel close nipples (LEADER Order # 72101) be installed. Other options are available. Contact LEADER Customer Service or your local dealer.

1. Remove the threaded plug(s) from the couplers located on each side of the boiling pan.
2. Wrap Teflon tape around each end of the stainless steel close nipples.

3. Thread a stainless steel nipple into each of the couplers on the boiling pan.

4. Thread a stainless steel ball valve onto each of the installed nipples.
5. Tighten so the handles of the ball valves are on top.

6. Install a thermometer (not supplied) on each side of the boiling pan. The thermometers are mounted in the ¼” threaded fittings near the draw off valve couplers. Remove the plugs from the fittings in the pan. Teflon tape the threads on the thermometer and thread into the fittings. Tighten and rotate the “7” so it is straight down for easier viewing standing next to the evaporator.

First Boil

The first boil is done to remove any residual materials from the pans and to “season” the bricking and insulation.

1. Prepare 15 gallons of a baking soda and water mix in proportion as follows:
 a. 1-1/4 ounce of baking soda
 b. 15 gallons of water
2. Fill the boiling pan with the baking soda : water mix to a level of approximately 3 inches.
3. To season the bricking, start by building a small fire in the fire box and very gradually build to a normal fire.
4. Boil the solution for approximately 30 minutes. Watch the boil carefully and replenish the solution as needed to ensure the solution in the pan remains at approximately the 3 inch level.
5. Check all equipment:
 a. No leaks at fittings
 b. Pan is boiling evenly
 c. Valves work properly
 d. Draft is correct (pan boils evenly)
6. Drain the baking soda solution from the pan. Rinse the boiling and reservoir pans thoroughly with clean unsoftened, non chlorinated well or spring water. Drain the water and dry the pans.
OPERATION OF THE HALF PINT EVAPORATOR

NOTE: NEVER FIRE THE EVAPORATOR WITHOUT LIQUID IN THE PAN AND ENOUGH LIQUID SO THE PAN DOES NOT GO DRY AS IT COOLS AFTER YOU STOP FIRING.

You will feed sap into one side of the boiling pan from the reservoir pan and will draw off syrup from the opposite side of the boiling pan.

FLOW IN THE PAN

THEORY OF OPERATION

GRADIENT

A maple syrup evaporator works under the principal of gradient. As the sap boils, it concentrates. As it concentrates, the sugar concentration increases and the volume decreases. As the concentration increases (and the volume decreases), the liquid works to maintain the levels across the evaporator so the less concentrated liquid (sap) will “push” its way toward the more concentrated liquid. In an evaporator you will be concentrating the percent of sugar from the incoming sap (approximately 2%) to the syrup product (approximately 66%).

FORMING THE GRADIENT

When the half pint is first filled, the boiling pan and reservoir pan will have the same concentration of sugar in the sap. As you boil the sap, the sugar concentration will increase (volume of water will decrease). To maintain the liquid level in the boiling pan you will add less concentrated liquid from the reservoir pan to the first compartment of the boiling pan. The second compartment of the boiling pan now has a more concentrated liquid than the first compartment so the less concentrated liquid will move toward (“push” into) the second compartment to try to bring the concentrations equal. The same activity occurs between the second and final (third) compartment in the boiling pan.
MAINTAINING THE GRADIENT

The important factors to remember in maintaining the gradient area as follows:
- Firing
- Defoamer
- Minimize the effects of flow reversal

Firing

You are seeking to maintain a constant boil. A constant boil will keep the liquid “push” in the boiling pan. If the boil is not consistent the liquid will flow in reverse and the gradient will be reduced or lost. The arch is designed for a small wood fire.

The wood to use:
- Dry for at least two years
- Cut to approximately 18” in length
- Split into small chunks to allow larger surface area (approximately 2” to 3” in diameter)
- A mix of hardwood (longer lasting, more BTUs) and softwood (quicker, intense heat)
- NOT slab wood

Loading the arch:
- Wood should stay on the grates and be 2” to 4” inside the arch so the fire does not overheat the arch face
- Crisscross the wood to allow the air to reach as much of the wood as possible
- Do not hit the pan when loading the wood

When:
- Fire consistently with small amounts of wood to maintain the level of heat
- Use a timer to stay on schedule for the firings, 6 to 10 minutes depending on wood quality, size and desired intensity of boil. TIP: Fire more often with less wood each time (use 2 to 4 sticks per firing).

Defoamer

The purpose of defoamer is to prevent foam build up in the boiling pan. Foam build up will prevent proper evaporation of water from the sap. Foam does not handle heat as does liquid. Too much foam could lead to burning the pan.
- Use defoamer on a regular basis. One method is to add defoamer each time you add wood to the fire.
- Add 1 drop of defoamer where the sap is entering in the boiling pan from the reservoir pan.

Minimize Reversal Effects

Reversal occurs when the boil in the pan is reduced. This can happen when firing is inconsistent or when there is a change in the pan flow direction (such as when the pan flow is reversed to reduce the sugar sand buildup). To minimize these effects:
- Maintain a consistent boil
- Before you stop for the day, draw-off about a gallon of almost finished syrup into a container and cover. You will add this liquid back into the boiling pan the next time you boil.
MAKING SYRUP

NOTE: NEVER leave the pan unattended. There is a risk of fire and you could ruin your pan if the level of sap goes too low.

1. Fill the boiling pan with sap to a level of 1 ½” to 2”.
2. Fill the reservoir pan to 2/3 to ¾ full.
3. Check to ensure all fittings are secure and do not leak.
4. Build a small wood fire in the arch. Keep the firing consistent with good wood (see The Wood To Use in the Firing Section) in order to keep a consistent boil. With a properly fed fire and insulated arch - half pint users are able to boil from 5 to 8 gallons of sap an hour.
5. As the sap boils in the boiling pan it will lose moisture. You will need to keep the level of sap as close to 1 ½” as possible. To maintain the level of sap, feed from the reservoir pan through the valve. Adjust the valve so it is replacing the sap usually this will be drops or drizzle. Do not feed the sap too quickly as it will reduce the boil.
6. As the first time you boil the sap is not concentrated in any area of the pan, the first draw off will take several hours. The next small draw off batches will be regular and small. Timing will depend on how consistent you are in firing the evaporator and how much sugar content is in the sap.
7. When to draw off
8. The sap in the syrup section of the syrup pan must be boiled until it reaches 7.0° to 7.5°F above the boiling point of water (the draw off temperature). The boiling point of water is not a consistent point. Therefore the following is the recommended method for determining the draw-off temperature.
 a. The sap will turn an amber or darker amber color.
 b. The temperature of the sap will reach 7.0° to 7.5°F above the boiling point of water.
 c. Use a hydrometer and test cup in conjunction with the thermometer.
 i. As the sap begins boiling in the syrup pan, monitor the thermometer. The thermometer needle will need to go around completely once and come back to the “7” mark on the thermometer.
 ii. When the “7” mark is reached, hydrometer the syrup. See ATTACHMENT #1 on the use of a hydrometer.
 iii. Adjust the thermometer to “7” when the hydrometer indicates the sap in the pan has turned to syrup. To adjust the thermometer, place the Allen wrench, provided with the thermometer, into the screw and turn until the “7” aligns with the needle.
9. Due to the small sizes of the draw off batches, as an option users will collect the batches of sap boiled to “almost syrup” from the evaporator into a bucket or pail. This larger collected batch will then be boiled on another heat source. It is recommended you use a hydrometer to test the final syrup.
10. At the end of the day draw off a container (approximately 1 gallon) of the sap closest to being syrup. Cover and set aside for the next day (See the Maintenance section – Daily).
11. After you have stopped firing for the day, continue to watch the evaporator until there is no more boiling and embers are no longer present in the firebox. Make sure the liquid level is maintained in the boiling pan.

FLOW REVERSAL

In order to minimize the buildup of sugar sand and niter, the flow in the pan should be reversed each day. The following is the illustration of the change (Day 1 to Day 2):
To do the reversal:
1. Leave the liquid in the boiling pan.
2. Empty the reservoir pan into a container.
3. Turn the reservoir pan 180° and move to 6” from the rear of the boiling pan.
4. Refill the reservoir pan level to 2/3 to ¾.
5. Fill the boiling pan to the operating level (1 ½”).
6. Start the fire in the arch.
7. Slowly feed the liquid saved at the end of the previous day to the new draw off compartment.
HYDROMETER FUNCTION
A hydrometer works based on the density of the maple syrup. There are two scales on the hydrometer; Brix and Baume. The Brix scale indicates the percentage of sugar in the maple syrup. The Baume scale is a measure of how dense the maple syrup is related to the density of water. The correct density for maple syrup is a minimum of 66% sugar (66°Brix/35.6°Baume). You will need to verify your state’s rules and adjust your readings as necessary. The hydrometers supplied by LEADER EVAPORATOR have been calibrated at two temperatures; 60°F Cold Test (66.9°Brix/36°Baume) and 211°F Hot Test (59.1°Brix/32.1°Baume). The maple syrup is expected to be at the upper temperature when it is measured immediately after being drawn off the evaporator.

NOTE: Hydrometers from Leader Evaporator by law are calibrated by the State of Vermont. The HOT and COLD test lines should be considered guidelines. Hydrometers should only be used by reading temperature and Brix/Baume readings.

USE OF A HYDROMETER
NOTE: Hydrometers are very fragile. Two most susceptible points of damage during use are the bottom and where the stem meets the body. Take extreme care when handling a hydrometer.

As hydrometers are susceptible to damage it is recommended the sugar house have a spare.

PREPARING A NEW HYDROMETER FOR USE:
1. Unpack the hydrometer from its tube or box.
2. Carefully inspect the hydrometer for any breakage. If you suspect any cracks, fill your test cup with hot water and immerse the hydrometer. If it leaks then it is damaged and can’t be used.
3. Place the hydrometer in its original container seated in the packaging and mark the container where the bottom of the hydrometer aligns.
4. Mark the container at the same lines as the HOT and COLD test lines in the hydrometer. When using the hydrometer in the future these lines are a check to ensure the scale inside the hydrometer has not moved.

USING THE HYDROMETER
1. Prior to using the hydrometer for the day, place it into its original container and check the hydrometer lines against the lines you marked on the container. If they do not match then replace the hydrometer.
2. Ensure the hydrometer is clean prior to every use. Accumulated material on the hydrometer will cause the hydrometer readings to be incorrect as it will have extra weight and not float as easily.
3. Hold the test cup upright. Fill the test cup up to ½” to ¾” from the top with the syrup to be tested or from the syrup section of the syrup pan. DO NOT HAVE THE HYDROMETER IN THE CUP.
4. Do not allow the syrup to cool. Place the cup on a level surface. Immerse a thermometer into the test cup. Slowly immerse the hydrometer into the syrup in the test cup until it reaches the “HOT” test mark then carefully release it. NEVER DROP THE HYDROMETER INTO THE TEST CUP.
5. Read the temperature from the thermometer.
6. Read the Brix or Baume number from the hydrometer.
NOTE: To correctly determine the Brix/Baume, you need to read from the line of the syrup.

LEADER EVAPORATOR Hydrometers: Hydrometers from LEADER EVAPORATOR are calibrated by the State of Vermont at two temperatures; 60°F Cold Test (66.9°Brix/36°Baume) and 211°F Hot Test (59.1°Brix/32.1°Baume). After numerous measurements it was determined 211°F is the average temperature of syrup when measured immediately after draw-off from the evaporator. When checking syrup at 211°F, the syrup is at the proper concentration when the reading line is at the Hot Test line. If the Hot Test Line is below the reading line of the liquid, continue to boil as the syrup is “light”. If the Hot Test Line is above the reading line of the liquid, the syrup is “heavy” and will need to be diluted with sap.

<table>
<thead>
<tr>
<th>TEMPERATURE °F</th>
<th>Degrees Baume</th>
<th>Degrees Brix</th>
</tr>
</thead>
<tbody>
<tr>
<td>209</td>
<td>32.0</td>
<td>59.0</td>
</tr>
<tr>
<td>202</td>
<td>32.25</td>
<td>59.6</td>
</tr>
<tr>
<td>193</td>
<td>32.5</td>
<td>60.0</td>
</tr>
<tr>
<td>185</td>
<td>32.75</td>
<td>60.4</td>
</tr>
<tr>
<td>176</td>
<td>33.0</td>
<td>60.9</td>
</tr>
<tr>
<td>167</td>
<td>33.25</td>
<td>61.4</td>
</tr>
<tr>
<td>158</td>
<td>33.5</td>
<td>61.8</td>
</tr>
<tr>
<td>149</td>
<td>33.75</td>
<td>62.3</td>
</tr>
<tr>
<td>140</td>
<td>34.0</td>
<td>62.8</td>
</tr>
<tr>
<td>130</td>
<td>34.25</td>
<td>63.3</td>
</tr>
<tr>
<td>120</td>
<td>34.5</td>
<td>63.8</td>
</tr>
<tr>
<td>110</td>
<td>34.75</td>
<td>64.3</td>
</tr>
<tr>
<td>100</td>
<td>35.0</td>
<td>64.8</td>
</tr>
<tr>
<td>90</td>
<td>35.25</td>
<td>65.4</td>
</tr>
<tr>
<td>80</td>
<td>35.5</td>
<td>65.9</td>
</tr>
<tr>
<td>70</td>
<td>35.75</td>
<td>66.4</td>
</tr>
<tr>
<td>60</td>
<td>36.0</td>
<td>66.9</td>
</tr>
<tr>
<td>50</td>
<td>36.25</td>
<td>67.4</td>
</tr>
</tbody>
</table>

7. Refer to the chart to determine if your syrup is “light” or “heavy”. If the reading is higher than the number on the table your syrup is “heavy” and will need to be diluted. If the number is lower than the number in the table, the syrup is “light” and will need to be boiled more.

8. After reading the hydrometer, remove it from the test cup and rinse it with either hot water or hot sap to ensure it is clean. Dump the contents of the test cup into the syrup section of the syrup pan or back into its storage container. Rinse the test cup with hot sap or hot water.

9. During the boiling period, store the hydrometer in a container of clean hot water or hot sap.
MAINTENANCE

DAILY

1. Allow the evaporator to cool until there is no more boiling and embers are no longer present in the firebox then clean out the ashes.

END OF SEASON

1. Clean the pans with a pan cleaner such as LEADER Order #63006 (1 quart size). The directions are as follows:
 a. Add water to the boiling pan until the coating to be removed is covered with water.
 b. Heat the water to simmering and keep at that level for a minimum of one hour and until the scale is noted to dissolve. Maintain the level of water in the pan.
 c. Replenish the water level so the coating to be removed is covered. Measure the depth of the water added to the pan.
 d. Add 0.8 ounces of concentrated pan cleaner for each inch of water in the boiling pan.
 e. Wearing protective gloves, brush the loose scale.
 f. If scale is removed flush the pan with unsoftened, non-chlorinated well or spring water. If the scale is thick you may need to continue soaking the solution in the pan.
 g. When the scale has been removed, drain off the solution, fill the boiling pan to the level of the dividers with clean unsoftened, non-chlorinated well or spring water. Add 2 ounces of baking soda mix. Brush the pans. Empty the water from the pans.
 h. Rinse the boiling and reservoir pans thoroughly with clean unsoftened, non-chlorinated well or spring water. Drain the water and dry the pans.
 i. Clean the ashes from the arch.
 j. Drain and wipe the reservoir pan clean.
 k. If rail gasket was used, discard.
 l. Place the reservoir pan on the boiling pan and cover with plastic or a tarp.

FEEDBACK

Please use the following e-mail address (feedback@leaderevaporator.com) to suggest improvements or enter comments on this document. Reference the document title in your note. You may also contact LEADER Customer Service.

NOTES